
Adult tissues do not regenerate after injury or degener-
ation1, with the exception of the gut epithelium2, cor-
nea3, skin4 and liver5. Regenerative medicine approaches 
applying cell transplantation for the regeneration of tis-
sues have shown promise in the laboratory; however, 
with the notable exception of haematopoietic stem cell 
(HSC) transplantation6,7, such approaches have had only 
minimal success in the clinic thus far. The main hurdles 
limiting the clinical translation of cell transplantation 
are cell survival, migration and integration8. The vast 
majority of transplanted cells die irrespective of the tis-
sue type9,10. The few surviving cells often remain at the 
injection site and sometimes proliferate, but most fail to 
properly integrate with the host tissue and contribute  
to functional recovery. Key experiments in the bone 
marrow and central nervous system (CNS) demon-
strated11–15 that the major limitations are the survival 
and integration of transplanted cells and the barriers 
presented by the host tissue environment. Moreover, the 
optimal cell type for successful transplantation and tissue 
regeneration remains elusive. Transplanting immature 
stem cells or progenitor cells can lead to better survival 
during the dissociation and transplantation stages16,17 but 
provides less control over the ultimate lineage commit-
ment of the transplanted cells than transplantation of 
mature cell types.

Combining cells with biomaterials offers an ave-
nue to address the challenges of cell survival, migra-
tion and integration18,19. In this Review, we discuss 
material-based approaches to improve the functional 
outcome of cell transplantation. We do not aim to 

provide a comprehensive list of all biomaterials used 
in the literature but rather to conceptualize the differ-
ent strategies, highlighting key examples (Table 1). We 
examine strategies that improve transplanted cell sur-
vival and integration, control differentiation, influence 
local angiogenesis and modulate the immune response 
(Fig. 1). We describe approaches affecting transplanted 
cells and strategies aimed at influencing the host tissue 
niche, with the ultimate goal of improving regeneration. 
We mainly focus on in vivo studies and limit the dis-
cussion of in vitro experiments to a few key studies that 
demonstrate important biological principles.

Influencing transplanted cells
Improving cell survival
Whether transplanted cells are expected to replace lost 
tissue or support endogenous repair through secreting 
regenerative factors, their long-term survival is a pre-
requisite for their successful application. However, cell 
survival during and after transplantation constitutes 
a major challenge. The majority of injected cells die 
within hours or days after transplantation9, substan-
tially limiting the efficacy of such therapies. There are 
three main mechanisms that have been identified to 
contribute to cell death during and after transplanta-
tion: mechanical forces exerted on the cells during the 
injection process; anchorage-dependent cell death and 
lack of growth factors; and insufficient support from the 
degenerative host tissue, including limited access to vas-
culature. Biomaterials can be applied to address all three 
challenges to improve transplanted cell survival.
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Reducing mechanical stress. The effect of mechanical 
stress during the cell injection process is an often under-
appreciated but significant reason for cell death20–22.  
Cells injected in a Newtonian fluid solution, such as 
saline, are exposed to shear and extensional forces within 
the syringe23. The velocity is higher at the centre of the 
syringe than near the walls, owing to the flow resistance 
exerted at the wall/fluid interface. Furthermore, the  
needle diameter is typically smaller than the syringe 
diameter, which leads to a sharp increase in extensional 
force at the syringe/needle interface. This increase  
in force results in cell membrane rupture and rapid 
necrotic cell death21 and can trigger apoptotic pro-
cesses, which can lead to further cell death after injec-
tion20,22. These effects are particularly pronounced in 
sensitive cell types such as mature neurons17. Injectable, 
shear-thinning biomaterials, such as alginate21 or 
hyaluronic acid24 (HA), can overcome this issue. 
Shear-thinning biomaterials form a lubricating layer on 
the interior of the syringe walls, thus diminishing the 
resistance to flow, which results in relatively equal veloc-
ities at the centre and the edges of the syringe during 
the injection process, known as plug flow, which reduces 
shear stress. The biomaterial network provides mechani-
cal protection from extensional forces to the cells, which 
leads to an increase in cell viability after injection20,21.

Fast gelation after injection limits cellular back-
flow, which is caused by the interstitial pressure of 
the tissue. This increases the total amount of cellular 
material remaining in the tissue after transplantation.  

For example, the absolute number of transplanted neu-
ral stem and progenitor cells (NSPCs) in brain tissue 
immediately after injection is threefold higher when the 
cells are injected in a physical blend of HA and methyl-
cellulose (MC) (HAMC) than in saline25. HAMC can also  
be used to improve the distribution of retinal stem and 
progenitor cells (RSPCs) after injection into the retina 
because the cell distribution in a syringe is better in 
HAMC than in saline26. Similarly, mesenchymal stromal 
cells (MSCs) can be delivered in an alginate hydrogel, 
which increases cell retention to 60% of the starting pop-
ulation 24 h after injection into a rat heart, compared 
with 9% in saline controls27. Alternatively, depending on 
the tissue type, a more solid implant may be required 
to bridge the void created by injury, as is the case for 
volumetric musculoskeletal injuries or transection of the 
spinal cord28,29. Polymers such as poly(lactic-co-glycolic 
acid) (PLGA)30 or chitosan31 form macroscale, rigid scaf-
folds of controlled shape that can be loaded with specific 
cell types and implanted into the target tissue to keep 
transplanted cells in place.

Preventing anoikis. With the notable exception of the 
haematopoietic system, cells need to adhere to matrix 
to survive. The issue of anchorage-dependent cell 
death, or anoikis32, can be addressed using biomateri-
als for cell transplantation. The pro-survival signal of 
adhesion is mediated by integrins, which are cell sur-
face receptors that bind to components of the extracel-
lular matrix (ECM)33. ECM binding induces integrin 
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Table 1 | Biomaterial design for cell transplantation

Property Approach Refs

Injectability Shear-thinning materials 21,24

Rapid gelation in vivo Secondary crosslinking in materials responsive to temperature, 
light or pH

25,75,77,78

Cell adhesion Materials composed of natural ECM factors 25,36

Modification with peptides that mimic ECM proteins 40,41,45

Growth and differentiation factor support Chemical or physical incorporation of factors in the material 52,58,88

Cell deployment Porosity 87,93

Modification with peptides that mimic ECM proteins 87,94

Viscoelasticity 98

Mechanical cues Secondary crosslinking in materials responsive to temperature, 
light or pH

25,75,77,78

Separation of bulk and microscale properties 79,80,84,87

Magnetically responsive materials 109,123

Vascularization Release of pro-angiogenic factors 272–275

Matrix-bound VEGF 164,169

Porosity 171,172,175

Pro-angiogenic materials 176,178

Vascular cell delivery 188,192

Inflammatory response Backbone selection 202,211

Hydrophilicity 228,234

Shape and size 244,246

Ligand immobilization 249,250

ECM, extracellular matrix; VEGF, vascular endothelial growth factor.



clustering, activates focal adhesion kinase and stimu-
lates phosphoinositide 3-kinase (PI3K)/protein kinase B  
(AKT) and mitogen-activated protein (MAP) kinase 
pathways to promote cell survival34. Anoikis is  
triggered in cell suspensions after detachment from 
the culture plate before transplantation and during the 
acute post-transplantation phase. Biomaterials com-
prising molecules that are part of an ECM and that 
function as integrin ligands, such as collagen, laminin, 
fibronectin or HA, can prevent anoikis. For example, 
cell injection in HAMC substantially improves cell 
survival after transplantation in the brain and retina 
compared with injection in saline, leading to func-
tional recovery in models of stroke and blindness, 
respectively25. This pro-survival effect of HAMC is 
partly mediated by the binding of HA to specific cell 
surface receptors (CD44) and consequent activation of 
pro-survival signals35. Similarly, the use of an injectable 
scaffold consisting of collagen I and laminin leads to 
a more than fivefold increase in NSPC survival after 
transplantation in a mouse model of traumatic brain 
injury compared with injection in media36. Moreover, 
behavioural recovery is only achieved in animals  
transplanted with NSPCs in scaffolds.

Synthetic materials can also be modified with 
integrin-binding domains to mimic ECM-mediated 
cell signalling events. The best studied example is 
tripeptide arginine-glycine-aspartic acid (RGD), which 
binds to at least eight different integrin complexes37,38, 

which recognize various ECM molecules including 
fibronectin and vitronectin. Short peptides, such as 
RGD, are more stable than their full-length protein 
counterparts and amenable for the precise spatial and 
conformational functionalization of materials using 
flanking amino acid sequences and defined conjuga-
tion chemistry39. The application of RGD-modified 
alginate hydrogels resulted in a marked increase in the 
survival of MSCs in vitro and improved bone growth 
in vivo after implantation in the mouse subcutaneous 
space compared with unmodified alginate hydrogels40. 
RGD-modified materials can be used in multiple tis-
sue types, including heart27, brain41 and spinal cord42. 
Similar to RGD, the laminin-derived peptides IKVAV 
and YIGSR and the collagen-derived peptide GFOGER 
can be incorporated into biomaterials to improve cell 
adhesion and survival43–45. To maximize cell survival, 
the integrin-binding peptide needs to be tailored  
to the target cell population and reflect the cell recep-
tors expressed on the surface of the cells as well as the 
tissue-specific ECM. For example, laminin-mimetic 
peptides can be used for neural cell transplantation46, 
and collagen-mimetic peptides can be employed in the 
musculoskeletal system47.

Growth factor support. Maximizing transplanted cell 
survival requires the replenishing of growth factors that 
are lost in degenerating tissues. Most growth factors 
induce survival or proliferation by binding to receptor 
tyrosine kinases, leading to downstream activation of 
the PI3K/AKT and MAP kinase pathways48. Growth 
factor concentrations in tissues decrease throughout 
life49,50. Biomaterials can not only act as cell carriers 
but also constitute a matrix for the attachment and 
controlled release of growth factors51 to provide high  
concentrations and prolonged exposure to growth 
factors in the immediate vicinity of the transplanted 
cells. For example, the delivery of myoblasts in algi-
nate hydrogels to an injured mouse muscle leads to an 
increase in muscle mass and shrinkage of the defect 
only if hepatocyte growth factor and fibroblast growth 
factor 2, both involved in muscle regeneration, are 
co-delivered in the hydrogels52.

The ideal duration of growth factor release is deter-
mined by the balance between maximizing trans-
planted cell survival and minimizing the potential for 
tissue side effects caused by unnecessarily long expo-
sure. For example, prolonged exposure to transforming 
growth factor-α (TGFα) led to epithelial hyperplasia 
and tumorigenesis in the mouse liver and mammary 
gland53–55. Bone morphogenetic protein (BMP) 2 has 
been extensively used for osteoinduction and after 
spinal fusion in the clinic56. However, its use has been 
associated with an array of clinical side effects, rang-
ing from ectopic bone formation to life-threatening 
spine swelling57. Excessive dosing is believed to be a 
main contributor to these side effects57. The temporal 
release profile of growth factors can be tuned by modu-
lating their immobilization strategy on the biomaterial. 
Physical blending of the factor in the material often 
results in rapid release, whereas immobilization of the 
factor through exploiting protein–protein interactions 
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Fig. 1 | Biomaterials for cell transplantation. Biomaterials 
can improve transplanted cell survival, influence 
transplanted cell fate and integration through the 
incorporation of bioactive cues, and modulate the host 
immune response (M1 versus M2 macrophages) as well as 
angiogenic responses.



(or chemical bonds) can delay (or effectively inhibit) 
the release, depending on the dissociation constant  
of the binding partners. For example, an injectable 
composite scaffold composed of poly(l-lactic acid) 
(PLLA) nanofibres inside a xyloglucan hydrogel can be 
used to deliver dopaminergic neurons and glial-derived 
neurotrophic factor (GDNF) in a mouse model of 
Parkinson disease58. GDNF can be either blended 
within the scaffold before transplantation, covalently 
immobilized on the PLLA nanofibres using sulfo-
succinimidyl 4-(N-maleimidomethyl)cyclohexane- 
1-carboxylate (sulfo-SMCC) chemistry or incorporated 
through a combination of the two. Interestingly, the 
combination of blended and immobilized GDNF 
results in an approximately threefold increase in trans-
planted cell survival compared with cell transplanta-
tion without a material, which cannot be achieved if 
animals are injected with materials with only blended 
or immobilized GDNF. The improved cell survival 
might be attributable to a combination of the effects of 
short-term release of the blended GDNF and long-term 
release of the immobilized protein.

The growth factor immobilization method can also 
affect downstream signalling. For example, epidermal 
growth factor (EGF) signalling transduction occurs 
both on the cell surface and in endosomes, owing to 
continuous internalization and recycling of the EGF 
receptor59. Immobilizing EGF on a biomaterial prevents 
its internalization and therefore spatially concentrates 
signalling to the cell surface. Chemical tethering of 
EGF to a poly(methyl methacrylate)-graft-poly(ethyl-
ene oxide) polymer induces stronger activation of the 
MAP kinase pathway in MSCs compared with soluble 
EGF, even if saturating concentrations of soluble EGF 
are used60. Activation of the MAP kinase pathway fur-
ther results in superior protection of MSCs from FAS 
ligand-induced apoptosis. The technology of EGF teth-
ering has also been employed on β-tricalcium phos-
phate (TCP) scaffolds to transplant human MSCs in 
the mouse quadriceps perifascial space, leading to an 
approximate threefold increase in cell survival 21 days 
after transplantation compared with TCP scaffolds  
without EGF61.

Biomaterials can be harnessed to mitigate trans-
planted cell death through many mechanisms. Interest-
ingly, combining the different strategies within a single 
material can lead to effects that are greater than the sum 
of their parts. For example, co-immobilizing growth 
factors and integrin-binding domains, such as the RGD 
peptide, on the same polymer chain can potentiate the 
bioactivity of the material, suggesting that integrins and 
receptor kinases can be synergistically activated62,63.

Controlling transplanted cell differentiation
Instead of using fully matured differentiated progeny, 
immature stem or progenitor cells and committed 
progeny can be transplanted into the host tissue. These 
cell types typically show better cell survival during the 
dissociation and transplantation stages16,17. Biomaterials 
can provide both mechanical and biochemical signals 
to control stem and progenitor cell fate to obtain the 
desired terminal cell type.

Mechanical material properties. Stem cell differentia-
tion, maturation and morphogenesis are influenced by 
the mechanical properties of the ECM64. For example, 
substrate stiffness affects the differentiation of various 
types of stem cells in vitro64. Material scaffolds with 
the mechanical properties of the tissue of interest are 
more likely to lead to the formation of the correct cell 
lineage. For example, MSCs cultured on stiff, medium 
and soft hydrogels exhibit increased expression of 
osteogenic, myogenic and neurogenic lineage mark-
ers, respectively65. Similarly, NSPC differentiation  
into the three CNS lineages (neurons, oligodendro cytes 
and astrocytes) can be achieved by culturing NSPCs 
on hydrogels of varying stiffness66. In the majority  
of these in vitro studies, the cells were seeded on top of 
the scaffolds and not encapsulated within the materi-
als. However, culture dimensionality is known to affect 
cell spreading67. For example, culture dimensionality 
can impact the activation of the yes-associated pro-
tein (YAP) and transcriptional co-activator with the  
PDZ-binding motif (TAZ) signalling pathway68, which 
is involved in mechanosensation69–71. Cell spread-
ing and YAP nuclear localization increase if MSCs  
are cultured on top of stiff HA-based hydrogels  
but decrease if MSCs are encapsulated within 
the hydrogels. MSCs cultured within stiff, highly 
crosslinked hydrogels do not spread and lack nuclear 
YAP, which can be partially reversed if the hydrogels are 
crosslinked by matrix metalloproteinase-degradable 
peptides that allow encapsulated cells to remodel their 
microenvironment.

The mechanical properties of organs change dur-
ing development and disease72. Scaffolds with dynamic 
mechanical properties that can change over time can 
be employed to mimic this process and study its effect 
on cell differentiation. For example, the stiffness of HA 
hydrogels during crosslinking through click chemis-
try can be regulated by the length of the crosslinker 
chain73. The crosslinking reaction in these gradually 
stiffening gels can be optimized to mimic the stiffen-
ing process in the developing chicken myocardium 
for the culture of embryonic chicken heart cells, ena-
bling their differentiation into mature cardiomyocytes. 
A variety of other hydrogels with time-controlled 
mechanical properties have been developed using 
a combination of diverse crosslink chemistries and 
incorporation of stimuli-responsive functionalities18. 
However, these materials have been used only to mimic 
disease progression or organ development in vitro 
thus far and have not yet found an application in cell 
transplantation.

Unfortunately, the knowledge acquired from in vitro 
experiments has only been sparsely translated into 
in vivo cell transplantation experiments. Scaffold stiff-
ness for in vitro experiments has been tuned across a 
broad, 100-fold range74, but biomaterials used in vivo are 
typically confined to the low kPa region owing to the 
requirement of injectability. Injectable hydrogels must 
be relatively soft to pass through a small-bore needle. 
However, the range of scaffold stiffness can be expanded 
by, for example, secondary crosslinking of injectable 
hydrogels by an external stimulus, such as light, pH 
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or temperature, to fine-tune the resulting mechanical 
properties75–77. For example, the initial dynamic covalent 
crosslinking of an injectable hydrogel can be combined 
with thermoresponsive physical crosslinking of engi-
neered proteins, such as elastin-like proteins78. The final 
storage modulus of the hydrogel can be tuned between 
1 kPa and 2.75 kPa through varying the amount of 
incorporated elastin-like proteins.

Prefabricated scaffolds can also be used for implan-
tation79–84. Furthermore, composite hydrogels can be 
designed, in which preformed microgels are incorpo-
rated within a bulk hydrogel85,86. The mechanical, topo-
logical and chemical properties of the microgels can be 
tailored independently from the bulk hydrogel proper-
ties by combining multiple crosslink strategies (Fig. 2a). 
This approach enables the expansion of the versatil-
ity of injectable hydrogels. Microgel composition and 
chemistry can be freely chosen, and shear-thinning 
properties are controlled by the bulk hydrogel com-
position and crosslink method. Such a combinatorial 
approach can be applied to decouple the stiffness of the 
bulk hydrogel component from pore formation in vivo 
(Fig. 2b). For example, high molecular weight alginate 
bulk polymer can be combined with oxidized, hydroly-
tically labile alginate microbeads. In a rat cranial defect 
model, differentiation of transplanted MSCs can then 
be controlled by tuning the bulk alginate stiffness. The 
fast degradation of the microbeads also improves MSC 
migration and osteogenesis87. Therefore, separation of 
bulk and microscale properties allows for optimization 
of the scaffold design.

Cytokine delivery. Differentiation of stem and pro-
genitor cells in a dish is typically achieved by using an 
appropriate cytokine cocktail. However, this approach 
cannot be applied for the differentiation of transplanted 
cells in vivo, because injected cytokines would rapidly 
diffuse away from the transplantation area. Similar 
to growth factors, cytokines can also be incorporated 
in a scaffold to prolong their residence time at the 
transplantation site. For example, the transplantation 
of MSCs within an alginate hydrogel into the mouse 
subcutaneous space leads to substantial new bone for-
mation only if the hydrogel also contains transforming 
growth factor-β3 (TGFβ3) and BMP2, which are both 
involved in normal bone development and repair88. 
Various criteria, such as the method of incorporation, 
release kinetics and concentration of cytokines, should 
be considered to control differentiation into specific 
cell types. For example, temporal control of certain 
cytokines is required for cell differentiation in early 
developmental stages89. In other cases, such as BMP 
induction of osteogenesis from MSCs90, simply pro-
longing the treatment with a specific factor is advan-
tageous in improving differentiation. The period of 
retention of a cytokine can be extended by different 
approaches. The molecule can be immobilized onto 
the main scaffold component through chemical bonds, 
protein–protein interactions or ionic interactions, or 
it can be encapsulated within microparticles or nan-
oparticles. For example, an extended release duration 
can be achieved by covalently immobilizing BMP2 to 
an injectable polyethylene glycol (PEG)-based hydro-
gel using azide/alkyne click chemistry91. Chemical 
immobilization enables quantitative BMP2 retention in  
the hydrogel for up to 21 days. By contrast, if BMP2  
is simply adsorbed to the hydrogel, 47% of the protein is  
lost within two weeks. Prolonged BMP2 retention 
results in improved osteogenic differentiation of peri-
odontal ligament stem cells after injection in the mouse 
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Fig. 2 | Injectable biomaterials. Composite hydrogels can be used as injectable 
biomaterials with multiple properties. a | Properties of an injectable biomaterial  
(top, hydrogel A) and a stiff non-injectable biomaterial (centre, hydrogel B) can be 
combined through the formation of a composite hydrogel. The initially non-injectable 
hydrogel can be formulated into micrometre-sized microgels and incorporated into 
the injectable bulk hydrogel, leading to the formation of a new injectable composite 
hydrogel (bottom). b | Slow-degrading hydrogels (blue) enable cell maturation but limit 
cell integration into the host tissue compared with fast-degrading hydrogels (green). 
Additionally , the mechanical properties of hydrogels provide stem and progenitor cells 
with important cues, which can induce their differentiation and maturation. However, 
owing to changes in the mechanical properties during the degradation process, 
fast-degrading hydrogels provide only limited control over cell fate. Composite 
hydrogels with fast-degrading porogens and a bulk hydrogel with defined and stable 
mechanical properties can be used to trigger in vivo cell differentiation and improve 
cell infiltration into the host tissue.



subcutaneous space compared with cells injected in a 
scaffold with adsorbed protein, whereas cell survival 
is seemingly unaffected. Similarly, prolonged, local 
release of dibutyryl cyclic-AMP from PLGA micro-
spheres, distributed along the walls of chitosan chan-
nels, improves the differentiation of NSPCs within the 
channels towards the neuronal lineage if transplanted 
in the rat spinal cord after injury92.

Improving transplanted cell engraftment
The use of scaffolds for cell transplantation improves cell 
retention in the injection site. However, to promote recov-
ery, cells need to eventually integrate into the host tissue, 
which requires migration of the transplanted and/or  
host cells. Biomaterial porosity and adhesion signals 
are both crucial for transplanted cell engraftment. For 
example, macroporous scaffolds lead to superior MSC 
engraftment, host cell infiltration and bone repair after 
transplantation in a mouse cranial defect compared 
with conventional nanoporous hydrogels with the same 
material backbone93. Similarly, the rate of void-forming 
porogen degradation in alginate gels correlates with 
the amount of MSC release in vitro and in vivo after 
transplantation in the mouse subcutaneous space87. Cell 
deployment is further substantially decreased in alginate 
gels without the void-forming component. Moreover, 
increasing the amount of RGD peptides within the algi-
nate gels improves cell release from the material in vivo, 
presumably by providing more anchoring points for the 
generation of traction forces required for cell migra-
tion. Similarly, RGD functionalization of microporous 
alginate with shape-memory properties has been shown 
to be essential for cell infiltration in the host tissue and 
persistence in vivo94.

In addition to biomaterial stiffness, viscoelasticity is 
also a crucial parameter for cell differentiation and pro-
liferation in vitro95–97 and for cell engraftment in vivo98. 
RGD-modified alginate hydrogels can be fabricated with 
different rates of stress relaxation, and MSC engraft-
ment and new bone formation are substantially better 
in fast-relaxing hydrogels than in slow-relaxing gels,  
3 months after transplantation of human MSCs in a rat 
cranial defect. Tissue remodelling and hydrogel degra-
dation are further accelerated in the fast-relaxing gels, 
possibly owing to better host cell infiltration into the 
scaffold, demonstrated by a migration assay in vitro. 
Interestingly, empty (not cell-laden) fast-relaxing 
hydrogels induce similar levels of new bone growth to 
cell-laden fast-relaxing hydrogels, suggesting that the 
contribution of the transplanted MSCs to regeneration 
is minimal.

Strategies influencing the host tissue niche
The tissue niche is an indispensable component of cell 
biology and function99. Under physiological conditions, 
niche cell types and molecules regulate stem cell qui-
escence, activation and differentiation100. However, cells 
are often transplanted into diseased or degenerated 
tissue, which is hostile and not conducive to regen-
eration. Biomaterials can be applied to modulate the 
host microenvironment and improve transplanted cell 
engraftment and tissue regeneration.

Mechanical stimulation
The mechanical properties of biomaterials can be tai-
lored to directly influence regeneration in the host 
tissue. This strategy has mainly been explored in mus-
culoskeletal tissues. Beginning with seminal studies in 
the 1980s101,102, it has since been demonstrated that con-
trolled mechanical stimulation by cyclic and axial (that 
is, in the direction of the bone axis) movement can affect 
bone healing after fracture. Early timing and high strain 
rate of axial displacements, up to a maximum thresh-
old, substantially improve bone healing103–106. The exact 
molecular mechanisms underlying this effect remain 
unclear, but integrin-mediated mechanosensation by 
bone cells is thought to be involved107.

Instead of developing external actuation devices to 
deliver mechanical stimuli, biomaterials can be devised 
to provide biomechanical stimulation at the micro scale. 
Incorporation of magnetizable components allows 
the use of external magnetic fields to modulate local 
biomechanical forces. For example, magnetic porous 
scaffolds can be fabricated by adding magnetite nano-
particles to the nucleation reaction of hydroxyapatite 
and collagen I108. The resulting composite material 
exhibits a homogeneous distribution of magnetite 
throughout its volume and is biocompatible, inducing 
no adverse reactions and substantially improving new 
bone growth in rabbits compared with non-magnetized 
hydroxyapatite–collagen I scaffolds109. Similarly, a 
magnetic nanofibrous scaffold can be created by elec-
trospinning poly(d,l-lactic acid) (PLA) mixed with 
hydroxyapatite nanoparticles and iron oxide nano-
particles110. Implantation in a rabbit bone defect and  
application of an external magnetic field result in accel-
erated bone formation and increased deposition of oste-
ocalcin and collagen compared with implantation alone. 
The resorption of the transplanted biomaterial is also 
faster in the presence of the magnetic field, providing 
evidence for tissue remodelling.

Interestingly, external magnetic fields have been 
shown to promote osteogenesis and to regulate the 
direction of bone growth on their own111. Therefore, 
it is unclear whether the beneficial effects of magnetic 
biomaterials are caused by biomechanical stimulation 
or by other confounding factors. Poly(caprolactone) 
(PCL) scaffolds can be impregnated with magnetite 
nanoparticles to assess the activation of mechanotrans-
duction signalling pathways in primary osteoblasts in 
the presence of an external magnetic field112. In the 
cultured osteoblasts, Rho GTPase, focal adhesion 
kinase (FAK) and paxillin — all typical effectors of 
integrin-mediated biomechanical signalling — are 
synergistically activated by the presence of magnetite 
nanoparticles in the scaffold and the external magnetic 
field. Implanting the PCL composite with or without 
magnetite in a mouse bone defect model and applying 
an external magnetic field further demonstrate that the 
presence of magnetite in the material and the external 
magnetic field exhibit an additive effect with regards to 
new bone formation.

Mechanical stimulation can also be applied to mus-
cle tissue to improve structural organization and force 
generation in vitro113–116, and there is some evidence 
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of a potential effect on muscle recovery after injury 
in  vivo117,118. Cyclic compressive stimulation pro-
motes force recovery and decreases the expression of 
inflammatory markers in a rabbit exercise-induced 
muscle injury model119. This effect depends on the fre-
quency and magnitude of the stimulation120. Initiating 
mechanical stimulation immediately after injury further 
improves force recovery compared with a delayed onset 
of stimulation121. ‘Biphasic’ porous, magnetic hydro-
gels can be synthesized by crosslinking alginate mixed 
with iron oxide microparticles122 in the presence of a 
magnetic field, resulting in a concentration gradient of 
iron oxide within the hydrogel. This gel, implanted in a 
mouse model of muscle injury, can be externally stim-
ulated with a magnet to induce cyclic mechanical com-
pressions123. Interestingly, the mice treated with the gel 
and magnetic stimulation show increased muscle fibre 
size and decreased fibrosis compared with mice treated 
with the gel alone or untreated mice. This improved tis-
sue phenotype is correlated with a significant increase 
in maximum contractile force.

Co-delivering mechanical stimulation with cells 
offers another avenue to improve cell transplanta-
tion. For example, magnetic nanoparticles can be 
immobilized onto MSCs by binding to either integ-
rins or a mechanosensitive receptor124. Injection of the 
nanoparticle-modified MSCs into chick femur explants 
and application of an external magnetic field, induc-
ing a mechanical stimulus, lead to a 31–34% increase 
in bone formation and significantly higher bone den-
sity than in saline-injected femurs. Bone formation in 
femurs injected with unmodified MSCs in the presence 
of a magnetic field or modified MSCs in the absence of 
a magnetic field is similar to in saline-injected femurs.

Therefore, the mechanical properties of biomateri-
als can induce regenerative responses in the host tissue. 
Progress in ‘smart’ polymers that respond to external 
cues, such as magnetic fields, may obviate the need for 
complex and cumbersome external actuation devices.

Inducing plasticity in the host tissue
Transplanted cells need to survive and integrate into 
the host tissue to provide functional benefits in cell 
replacement approaches. Tissue degeneration is asso-
ciated with fibrosis and scar tissue formation125, which 
present a barrier to the integration of transplanted cells. 
In the CNS, for example, a glial scar forms after injury 
owing to the excessive proliferation of astrocytes and 
pericytes, resulting in hypertrophy and the secretion of 
ECM molecules. This glial scar is a physical and chem-
ical barrier to regeneration126. The ECM molecules 
chondroitin sulfate proteoglycans (CSPGs) are abun-
dant in the glial scar and play a pivotal role in inhibiting 
regeneration127,128. CSPGs are normally part of perineu-
ronal nets, which are responsible for maintaining the 
maturity of adult neuronal connections and for limit-
ing pathological plasticity129. However, the presence of 
perineuronal nets also prevents transplanted cells from 
establishing connections with host neurons. Treatment 
with chondroitinase ABC (ChABC), a bacteria-derived 
enzyme that degrades CSPGs, has shown promise in 
improving recovery after spinal cord injury (SCI)130 

and stroke131,132. Combined with cell transplantation, 
ChABC promotes the formation of graft–host connec-
tions and migration of transplanted cells in the spinal 
cord133,134 and retina135,136. Notwithstanding these prom-
ising results, prolonged ChABC delivery is plagued by 
the invasiveness of catheter systems and their vulner-
ability to infection, as well as the low stability of the 
enzyme at 37 °C (reF.137). Material delivery systems can 
bypass these issues and achieve a minimally invasive, 
prolonged release of ChABC.

Affinity-based release strategies can be applied 
by taking advantage of the binding affinity of the Src 
homology domain 3 (SH3) to proline-rich peptides138,139. 
ChABC can be expressed as a fusion protein contain-
ing SH3, and SH3-binding peptides can be chemically 
immobilized on MC. By selecting SH3-binding peptides 
with different affinities for SH3, the ChABC release rate 
can be tuned. Importantly, hydrogel-bound ChABC 
does not lose its bioactivity over a 7-day release period. 
This delivery system can be used to decrease CSPG lev-
els and induce behavioural recovery in a rat model of 
SCI140. Approaches for combining MC-ChABC with 
cell transplantation are still in their infancy, but initial 
studies show promise in improving tissue repair141.

Incubation of ChABC with trehalose also preserves 
its conformational stability and maintains its bioactiv-
ity for up to 15 days, as compared with 3 days in the 
absence of trehalose142. ChABC and trehalose can be 
loaded into lipid microtubes, which can then be mixed 
with an agarose gel. Implanted in a rat SCI model, the 
biomaterial-delivered ChABC leads to a decrease in 
CSPG levels and perineuronal nets 2 weeks after injury, 
which cannot be achieved with saline-delivered ChABC. 
Interestingly, if the microtube delivery system is loaded 
with both ChABC and neurotrophin-3 (NT-3), some 
behavioural recovery can be observed.

In addition to removing the impediment to regen-
eration caused by inhibitory molecules such as CSPGs, 
material strategies can also be applied to deliver factors 
that directly promote plasticity and rewiring. A major 
pro-plasticity factor in the CNS is brain-derived neuro-
trophic factor (BDNF)143. Since its identification in the 
1980s144,145, a plethora of studies have demonstrated that 
BDNF is essential for the synaptic changes triggered by 
learning and memory146–148, as well as for neural rewir-
ing and recovery after injury149,150. Through inducing 
plasticity, BDNF treatment increases graft–host con-
nections in peripheral nerve grafts and for embryonic 
neurons transplanted into the spinal cord after SCI151,152. 
Furthermore, BDNF treatment promotes visual recovery 
when combined with embryonic retinal grafts in a model 
of retinal degeneration153. However, BDNF treatment can 
also cause the formation of pathological connections, 
functional deterioration and spasticity154,155. Therefore, 
treatment with exogenous BDNF has to be precisely 
localized at the injury site and temporally regulated. 
However, BDNF does not cross the blood–brain barrier, 
and thus, lentiviral constructs are mostly used to induce 
its expression at the injury site, which limits the spatio-
temporal control of BDNF expression. Incorporation of 
BDNF into biomaterial delivery systems can be applied 
to address these challenges.
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For example, BDNF-loaded PLA scaffolds with ori-
ented macropores can be applied to bridge a transec-
tion defect in a rat model of SCI156. The scaffolds can 
be implanted in fibrin gels containing acidic fibroblast 
growth factor and compared against PLA scaffolds with-
out BDNF. In the BDNF-containing scaffolds, increased 
cell migration and laminin deposition are observed. 
Moreover, neuroprotection on the rostral side of the 
injury can be improved. However, the number of myeli-
nated axons inside the scaffold is approximately an order 
of magnitude lower for both the BDNF and control PLA 
scaffolds compared with the fibrin gel alone, suggesting 
that PLA is not ideal for SCI transplants. Alternatively, 
BDNF added to agarose hydrogels substantially improves 
axon infiltration into the scaffold after implantation in 
rat models of SCI157,158. Similarly, poly(ethylene-co-vinyl 
acetate) (EVA) can be used to create tubular scaffolds 
for nerve guidance in a dorsal root axotomy model159. 
BDNF can be first incorporated in the EVA tubes and 
then released in a bioactive form for over 30 days. 
However, releasing BDNF from the EVA tubes leads only 
to a trend towards an increased number of myelinated 
axons in the scaffold in vivo, which is not statistically 
significant. Despite the promising results obtained with 
these materials, no functional recovery was observed in 
these studies. Tubular constructs are applicable for tran-
section models of SCI because they can serve as bridges 
for repair; however, injectable materials are preferable for 
other applications because they limit host tissue damage.

Scaffolds composed of natural ECM, such as HA, 
are often thought of as biocompatible and limit adverse 
cell responses. For example, BDNF can be delivered to a 
stroke-injured mouse brain using a commercially avail-
able injectable hydrogel containing thiolated HA and 
collagen, crosslinked via PEG-diacrylate160. Interestingly, 
hydrogel-mediated BDNF delivery leads to behav-
ioural recovery in two different tasks, which cannot be 
achieved when animals are treated with soluble BDNF. 
Hydrogel-mediated BDNF delivery triggers changes in 
neuronal connectivity, leading to a pronounced increase 
in axonal connections within the peri-infarct cortex and 
between the peri-infarct cortex and contralateral brain 
areas. Interestingly, the newly formed connections are 
restricted to brain areas that are already axonal targets 
of the peri-infarct cortex but do not occur in other brain 
areas, allaying concerns about pathological plasticity. In 
addition to potentiating connections of existing neurons, 
hydrogel-mediated BDNF delivery also stimulates the accu-
mulation of newborn neurons in the peri-infarct cortex. 
Hydrogel-mediated BDNF delivery can also be employed 
in a non-human primate model of stroke, with detectable 
levels of BDNF reported in the peri-infarct area, validating 
the potential of this approach for clinical translation.

Inducing vascularization
Regeneration processes are strongly dependent on the 
host vasculature for the supply of oxygen, nutrients 
and growth factors. Diffusion limits of oxygen, nutri-
ents and metabolites result in a maximum distance of 
150–200 μm between cells and blood vessels161 to ensure 
adequate supply. Angiogenesis — the process of new 
blood vessel formation — is initiated by an angiogenic 

signal, which is often released by tissues in response to 
hypoxia162. This signal induces detachment of pericytes 
that surround the existing blood vessel, followed by dis-
assembly of endothelial cell–cell junctions. Endothelial 
tip cells sprout and migrate towards the angiogenic 
stimulus, and stalk cells, located behind the tip cells, 
proliferate to generate the trunk of the newly formed 
vessel. ECM deposition and pericyte coverage ensure 
maturation and stabilization of the vessel.

Vascular endothelial growth factor (VEGF) is the 
most potent angiogenic factor and has been the focus 
of many therapeutic approaches targeting the vascu-
lature163. For example, VEGF can be immobilized on 
collagen sponges through 1-ethyl-3-(3-dimethylami-
nopropyl)carbodiimide (EDC)–N-hydroxysuccinimide 
(NHS) chemistry. Transplanted into a rat model with 
a heart defect164, such VEGF-containing scaffolds 
exhibit significantly higher blood vessel density and 
overall thickness and recruit more haematopoietic 
cells and myofibroblasts than scaffolds without VEGF. 
Importantly, transplantation of bone marrow cells 
within VEGF-containing collagen scaffolds greatly 
improves their survival. A longstanding caveat of VEGF 
therapeutics is the issue that soluble VEGF leads to the 
generation of leaky and unstable blood vessels, which 
has hindered its clinical application165. Incorporating 
VEGF in biomaterials not only provides spatiotempo-
ral control over its release but can also alter its pres-
entation to cells, resulting in increased potency166. 
Matrix-bound VEGF induces differential phosphoryl-
ation of the VEGF receptor, promotes receptor cluster-
ing and activates different intracellular pathways than 
soluble VEGF167. The association of the VEGF recep-
tor with β1-integrin is essential for the differential 
activity of matrix-bound VEGF (Fig. 3a). Acrylate and 
acrylamide-based nanoparticles, the in vivo degrada-
tion rate of which can be controlled by the chirality of 
the peptide crosslinker168, can be loaded with VEGF and 
encapsulated in HA hydrogels, crosslinked by Michael 
addition. Co-delivery of fibronectin fragments that bind 
α3β1 and α5β1 integrins to the mouse subcutaneous 
space or stroke-injured brain169 leads to the generation 
of new blood vessels with a more mature morphology 
and with decreased leakiness and tortuosity, resembling 
wild-type blood vessels, compared with VEGF nanopar-
ticles co-delivered with control fibronectin fragments 
that bind αvβ3 integrin.

A compelling alternative to using angiogenic factors 
is to modulate the physicochemical properties of the 
material to promote angiogenesis170. For example, thin 
membranes made of a variety of materials and with var-
ying pore size have been used to demonstrate that pore 
size can greatly affect neovascularization upon implan-
tation in the rat subcutaneous space171 (Fig. 3b). Pore 
sizes of 0.8–8 μm lead to the formation of 80–100-fold 
more blood vessels than smaller pores, with the effect 
being consistent among multiple materials. Therefore, 
greater pore size leads to increased neovascularization  
of materials; however, the absolute pore size values of 
these scaffolds (as opposed to thin membranes) are 
typically an order of magnitude higher, between 50 and 
300 μm (reFs172,173).
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In addition to pore size, the diameter of pore inter-
connections within a material affects vascularization174. 
TCP scaffolds with varying pore size and interconnec-
tion diameter were implanted in rabbits to assess neo-
vascularization175. Pore sizes greater than 400 μm led 
to the formation of blood vessels of larger diameter, 
whereas greater interconnection diameters (ranging 
from 70 to 200 μm) led to both the formation of a higher 
number of blood vessels and larger blood vessel diame-
ters. These findings suggest that, at least in the pore size 
range examined here (300–700 μm), pore interconnec-
tivity is a more important factor for vascularization than 
pore size.

Interestingly, the choice of biomaterial backbone can 
influence angiogenesis irrespective of porosity or pro-
tein tethering. For example, poly(methacrylic acid-co- 
methyl methacrylate) (PMAA-MMA) beads, implanted 
in myocutaneous (skin and underlying muscle) rat 
grafts, increase blood vessel counts in the graft by more 
than 40% compared with poly(methyl methacrylate) 
(PMMA) beads or no bead treatment176 (Fig.  3c). 
Similarly, in a mouse model of diabetes, PMAA-MMA 

beads improve neovascularization and promote wound 
closure in full-thickness wounds (skin and underly-
ing muscle)177. However, PMAA-MMA beads are very 
brittle. Porous scaffolds constructed from poly(butyl 
methacrylate-co-MAA)178 have tunable mechani-
cal properties and mitigate the brittleness observed 
with porous PMAA-MMA scaffolds. Implanted in the 
mouse subcutaneous space, poly(butyl methacrylate-co-
MAA) scaffolds lead to an approximately twofold 
increase in blood vessel formation compared with 
control poly(butyl methacrylate) scaffolds, owing to 
the upregu lation of the sonic hedgehog (Shh) pathway, 
which is involved in angiogenesis179,180. Furthermore, 
PMAA influences the host immune response to the 
biomaterial; more neutrophils and macrophages are 
recruited to the PMAA-treated tissue than with PMMA 
controls, with the macrophages being polarized towards 
an anti-inflammatory state180. Moreover, after incubation 
in human serum, protein adsorption differs between 
PMAA and PMMA, causing a decrease in complement 
activation in PMAA scaffolds181. Although more stud-
ies need to be performed to decipher the exact mecha-
nism of action of PMAA on angiogenesis, these data 
suggest that differences in initial protein adsorption 
to PMAA modulate immune cell recruitment, such  
as macrophage recruitment, and lead to the activation 
of the Shh pathway. This, in turn, promotes angio-
genesis by affecting macrophages and endothelial cells.  
It remains elusive whether this pro-angiogenic behavi-
our is unique to PMAA or whether it can also be elicited 
by other materials.

A conceptually different strategy to promote new 
blood vessel formation is through regulation of vascu-
logenesis, the process by which endothelial progenitor 
cells (EPCs) give rise to new endothelial cells to form 
de novo blood vessels182,183. The number of circulating 
EPCs declines in vascular diseases, such as type 2 dia-
betes184 and atherosclerosis185, providing the impetus for 
the development of EPC transplantation approaches. 
Hydrogels, such as alginate, fibrin and HA, can be used 
as EPC delivery vehicles to improve cell retention and 
neovascularization at the host site186,187. For example, the 
delivery of human EPCs in an alginate hydrogel contain-
ing chemically immobilized RGD and physically mixed 
VEGF leads to marked improvements in blood flow, 
vessel density and tissue viability in a mouse model of 
hindlimb ischaemia188. Interestingly, the EPCs, the algi-
nate scaffold and VEGF are all required to realize the full 
magnitude of this effect.

Biomaterials can also be applied to form primitive 
vascular networks from endothelial cells in vitro that can 
then be transplanted in vivo to achieve faster perfusion 
and anastomosis with the host vasculature189 compared 
with biomaterial–endothelial cell constructs that are 
transplanted without being first cultured in vitro. The 
addition of pericytes190,191 and the use of micropattern-
ing techniques to control the geometry of the preformed 
vascular network192 further improve blood perfusion and 
vasculature maturation in vivo. Such engineered vascu-
latures can also be used for therapeutic cell transplan-
tation. For example, the addition of aligned endothelial 
cells to a fibrin–collagen I scaffold that contains primary 
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Fig. 3 | Regulation of angiogenesis by biomaterials. a | Treatment with soluble vascular 
endothelial growth factor (VEGF) induces tortuous and leaky blood vessel formation. 
Colocalization of VEGF and β1 integrin-binding motifs within a hydrogel leads to 
successful material vascularization, with mature blood vessels. b | Biomaterial pore size 
affects angiogenesis. Larger pores lead to improved angiogenesis. c | Poly(methacrylic 
acid-co-methyl methacrylate) (PMAA-MMA) beads, but not poly(methyl methacrylate) 
(PMMA) beads, induce angiogenesis after implantation in vivo.



hepatocytes leads to significantly improved hepatocyte 
activity after transplantation in the mouse fat pad192. 
Importantly, this effect depends on blood perfusion of 
the transplanted endothelial cell vasculature. Similarly, 
adding endothelial cells to a collagen I module con-
taining primary pancreatic islets results in glycaemic 
control after transplantation into the subcutaneous 
space of diabetic mice. The co-transplanted endothelial  
cells contribute to the formation of vasculature inside  
the transplanted module, which connects to the host 
blood supply193.

Thus, biomaterials can provide a multipronged strat-
egy to modulate vascularization. Protein loading, inter-
nal structure, backbone material selection and vascular 
cell delivery can all be exploited to fine-tune host blood 
vessel growth and optimize regenerative outcomes.

Tuning the immune response
The immune system was long considered an impedi-
ment to the success of cell transplantation approaches, 
and research focused on inhibiting the immune response 
to transplanted cells. However, the immune system 
is being increasingly recognized as a major regulator  
of the balance between tissue regeneration and degen-
eration. T helper 1 (TH1)-type immune responses are 
associated with inflammation and tissue damage, 
whereas TH2-type immune responses are considered 
to mediate tissue healing and regeneration (box 1). 
This rule has been demonstrated to also be valid for 
biomaterial-mediated regeneration.

A biomaterial-driven TH2 immune response is 
essential for implanted ECM-mediated regenera-
tion194. For example, ECM from decellularized tissue 
promotes functional tissue recovery when implanted 
after muscle volumetric injury195,196 in animal mod-
els and humans. Such natural biomaterials, including 
bone-derived ECM, cardiac muscle-derived ECM and 

collagen, recruit T cells and polarize them into a TH2 
phenotype. However, this regenerative response is lost  
in recombination activating gene 1 (Rag1)−/− mice, which  
lack mature B and T  cells, and in CD4−/− mice,  
which lack CD4+ T  cells. Repopulation of Rag1−/−  
mice with wild-type T cells, but not with TH2-deficient 
T cells (rapamycin-insensitive companion of mamma-
lian target of rapamycin (Rictor)−/−), rescues the regen-
erative response. Comparing immune responses elicited 
by 14 different US Food and Drug Administration 
(FDA)-approved, tissue-derived ECM products after 
implantation in an abdominal wall muscle defect in the 
rat197 shows that there is a significant positive correla-
tion between tissue recovery and both the number of 
M2 macrophages and the M2:M1 ratio recruited to the 
biomaterial (box 1).

Therefore, biomaterials approaches aim to tip 
the TH1/TH2 balance towards the latter, which can be 
achieved by tuning the material type, backbone com-
position, architecture, mechanical properties and 
functionalization.

Biomaterial type. The type of biomaterial can exert 
a profound effect on the host immune response. For 
example, PLGA, which is often used for cell transplan-
tation198,199, acts as an adjuvant, inducing inflammatory 
TH1-type immune responses200,201. Dendritic cell (DC) 
maturation and inflammatory cytokine secretion are 
early hallmarks of a TH1-type response. Interestingly, 
PLGA, chitosan and alginate induce DC maturation 
and pro-inflammatory cytokine secretion, eliciting a 
TH1-type response, whereas HA downregulates DC 
maturation and pro-inflammatory cytokine secretion, 
and agarose has no effect202. Exposure to biomaterials 
also affects the potential of DCs to induce T cell activa-
tion and polarization203. The response of the immune 
system to the biomaterial depends on receptor-mediated 
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Box 1 | TH1 versus TH2 immune responses

T cells are activated by antigen-presenting cells, such as dendritic cells, and are a key part of the body’s adaptive immune 
response to specific antigens. T cells can be divided into CD4+ T helper (TH) cells, which secrete cytokines and coordinate 
the innate and adaptive arms of the immune response, and CD8+ T-effector cells, which kill cells compromised by 
pathogens or cancer. Different types of pathogens induce differential polarization of TH cells: intracellular pathogens 
such as viruses and bacteria trigger the activation of TH1 cells, whereas extracellular parasites, such as helminths, cause 
polarization into TH2 cells263,264. The TH cell types are distinguished by their cytokine secretion profile, with TH1 cells 
secreting interleukin (IL)-2, interferon-γ (IFNγ) and tumour necrosis factor (TNF)-α and TH2 cells secreting IL-4, IL-5 and 
IL-13 (reF.265). The specific cytokine profiles cause TH1 cells to stimulate strong CD8+ T cell responses, which eliminate 
pathogen-infected host cells, and cause TH2 cells to stimulate strong B cell responses for antibody production.

In addition to their roles in pathogen elimination, TH1 and TH2 responses are important modulators of tissue repair266. 
TH1 responses are involved in tissue damage and inflammation, whereas TH2 responses induce tissue remodelling and 
angiogenesis. Besides TH1 and TH2 phenotypes, other CD4+ T cell subsets that also play a role in the immune response 
have been identified267.

Macrophages are part of the innate immune response, which is triggered immediately upon exposure to a pathogen 
and is not antigen-specific. However, as an immune reaction proceeds and adaptive immunity is activated, blood-derived 
monocytes migrate into the target tissue and differentiate to create macrophages. Similar to the TH1–TH2 paradigm, 
macrophages can be broadly classified into M1 and M2 phenotypes, based on their marker expression, cytokine profile 
and functions268,269. M1 macrophages are activated by IFNγ and secrete TNFα and IL-12, which stimulate TH1 cells and 
promote an inflammatory, microbicidal environment. M2 macrophages are activated by IL-4 and IL-13 and stimulate TH2 
cells, basophils and eosinophils to promote tissue regeneration. Therefore, T cells and macrophages operate within a 
mutually dependent network, which coordinates polarization into inflammatory or tissue healing phenotypes270. In this 
Review, the term TH1-type response encompasses both TH1 cells and M1 macrophages, and the term TH2-type response 
includes both TH2 cells and M2 macrophages. Of note, M1 and M2 phenotypes are extreme ends of a spectrum, and 
intermediate macrophage phenotypes are often encountered in vivo271.



binding of immune cells to the biomaterial, for example, 
by integrins204, Toll-like receptors (TLRs)205,206 or CD44 
(reF.207). Moreover, the physicochemical material proper-
ties, such as hydrophilicity208,209 or surface roughness210, 
have an impact on the immune response owing to differ-
ences in nonspecific protein adsorption on the material, 
which affects initial immune cell adhesion.

HA is one of the most compelling immune-regulating 
materials because its effects depend on the molecular 
weight of the polymer chains211. High molecular weight 
(HMW) HA is abundant in the ECM of multiple tis-
sues and is indispensable for maintaining homeostasis 
through exerting an anti-inflammatory role212, as exem-
plified by HA-synthesis knockouts213,214. HMW HA 
can directly affect macrophages211,215,216, DCs202,217 and 
T cells218, thus preventing inflammation on multiple 
fronts. By contrast, HA fragments and low molecular 
weight (LMW) HA are generated during injury and pro-
mote TH1-type inflammatory responses219. The effects 
of LMW HA are just as multifaceted. LMW HA induces 
maturation, cytokine secretion and TH1-type polariza-
tion on macrophages211,220 and DCs221. These seemingly 
contradictory effects of HA can be explained by differ-
ential binding to CD44 — the main HA receptor. Longer 
HA chains can simultaneously bind multiple CD44 
molecules on the cell surface, altering their clustering 
and thus modifying downstream signalling pathways222. 
Owing to the multivalent nature of the HA–CD44 inter-
action, longer HA molecules bind more stably, and the 
amount of bound HA on the cell surface increases with 
molecular weight, which can also affect cell signal-
ling223,224. In addition, LMW HA, but not HMW HA, 
can induce inflammatory signalling by binding to TLR4 
and TLR2, which are normally employed for detecting 
molecular patterns in bacteria225,226. Thus, modulating the  
chain length of HA provides an opportunity to tailor  
the immune response elicited by the material.

Material chemistry. The chemistry of polymers can 
be modified to modulate their interaction with the 
immune system. Generally, hydrophobic materials 
induce acute, inflammatory immune reactions227. The 
surface chemistry can be altered to include hydro-
philic groups such as –COOH, –OH or –NH2 to mod-
ulate protein adsorption, complement activation and 
immune cell adhesion on the material228. Hydrophilic 
PEG has been widely used to decorate biomaterial sur-
faces to decrease protein binding229,230, even though its 
efficacy in vivo has been questioned231–233. Alternatively, 
zwitterionic polymers, which combine positive and 
negative charges, can be employed to mitigate immune 
cell recognition of the material and a fibrotic response 
in vivo234,235 owing to their stronger electrostatic inter-
actions with water molecules compared with surfaces 
that form hydrogen bonds with water, making water 
displacement for protein binding energetically ineffi-
cient236,237. Interestingly, surface chemistry can be used 
not only to modulate the amount of protein binding 
on the material but also to change the conformation 
of proteins. For example, the secondary structure238 of 
fibrinogen and its binding to domain-specific antibod-
ies239 depend on the surface to which it is adsorbed. 

Depending on the fibrinogen protein domains that are 
exposed on the surface, differential downstream inte-
grin activation, focal adhesion signalling and platelet 
binding are triggered228,240. It remains unclear how 
the modification of biomaterials with cell-adhesive 
peptides influences the inflammatory response. Both 
a greater number of adhering macrophages without 
activation241,242 and peptide-dependent polarization243 
have been reported.

Material architecture. The shape of a biomaterial can 
also influence the inflammatory reaction. Implantation 
of rod-shaped polymers with either a triangular, cir-
cular or pentagonal cross-sectional shape244 in rat 
muscle has shown that the foreign body response is 
shape-dependent in this model. Triangular polymers 
elicit a stronger immune reaction than pentagonal poly-
mers, followed by circular polymers. This shape effect 
is consistent among six different polymeric biomate-
rials. Similarly, poly(tetrafluoroethylene) (PTFE) discs 
with a smooth surface trigger only a moderate immune 
reaction in the rat subcutaneous space, compared with 
PTFE discs with conical projections on the surface245, 
suggesting that materials with sharp features, such 
as angles, induce a more pronounced inflammatory 
response in the host than materials with a smooth sur-
face. However, the exact mechanisms mediating this 
effect remain ill-defined thus far.

The size of spherical biomaterials also has an effect 
on the immune response246. Interestingly, large spheres 
1.5–2.0 mm in diameter exhibit markedly decreased 
macrophage adhesion and immune activation com-
pared with smaller spheres 0.3–0.5 mm in diameter 
after injection in the mouse intraperitoneal space and 
the monkey subcutaneous space. This effect is repro-
ducible for a range of materials, including alginate, 
steel, glass, PCL and polystyrene. For example, alginate 
spheres with a diameter of 1.5 mm can deliver pancre-
atic islets in diabetic mice, achieving glycaemic control 
for 175 days in 30% of the mice, whereas spheres with 
a diameter of 0.5 mm fail after 30 days owing to exces-
sive cellular deposits and fibrosis. Therefore, modify-
ing the physical parameters of a biomaterial can be 
used to modulate the host immune response; however, 
altering only the shape is insufficient for consistent 
glycaemic control.

Material functionalization. Biomaterials can be used to 
control the presentation of immune regulatory mole-
cules at the microscale. Immune activation requires 
ligand–receptor binding with innate (for example, 
macrophages) or adaptive (for example, T cells) immune 
cells. By incorporating such ligands in scaffolds, the 
efficiency of their presentation to immune cells and 
their proximity to secondary signals modulating the 
specificity of the induced response can be controlled. 
This approach is being explored in the tumour immu-
notherapy field but is still in its infancy in regenera-
tive medicine. For example, lipid nanodiscs decorated 
with peptide antigens and an immunostimulatory 
molecule induce a 47-fold increase in the number 
of antigen-specific cytotoxic T cells compared with 
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delivery of soluble molecules and antigens247. Similarly, 
a scaffold of mesoporous silica rods and liposomes with 
the incorporated T cell stimulatory signals anti-CD3, 
anti-CD28 and interleukin (IL)-2 can be used for 
T cell expansion ex vivo, with the resulting cell num-
ber depending on the relative density of stimulatory 
molecules on the polymer surface248.

Inducing antigen-specific immune modulation 
by specific functionalization of materials to promote 
regeneration is a compelling new avenue of research. 
For example, IL-4, which is the main TH2-polarizing 
cytokine, can be released from implanted biomaterials 
to increase M2 macrophage polarization, decrease fibro-
sis and improve tissue integration249–251. Materials can 
also be loaded with anti-inflammatory small molecules, 
such as dexamethasone, to decrease TH1-type responses 
in vitro and in vivo252.

Biomaterials provide a multifaceted tool to modu-
late the host immune response on multiple fronts (Fig. 4). 
Backbone selection, surface modification, physical prop-
erties and ligand immobilization can all be exploited to 
generate materials with immune-regulating properties.

Conclusions and outlook
Biomaterials have come a long way in regenerative med-
icine and now constitute an indispensable component of 
a successful cell transplantation strategy, along with cell 
preparation and chemokine selection. Different down-
stream applications require diverse physicochemical 
properties and thus, careful biomaterial design.

Most strategies to date have focused on manipulat-
ing a single parameter of the donor cell–host response; 
however, combinatorial approaches that aim to improve 
donor cell survival and to simultaneously decrease 
inflammation and remove barriers to integration have to 
be developed. Manipulating one aspect of regeneration 
may affect another in unexpected ways. For example, 
inducing a TH2 immune response not only decreases 
inflammation but also promotes angiogenesis, as seen 
in the case of MAA polymers.

Strategies have emerged to simultaneously mod-
ulate multiple facets of the regenerative response. 
For example, immune modulation by heparin nano-
particles can be combined with stimulation of angio-
genesis by matrix-bound VEGF in an HA hydrogel253. 

Interestingly, tissue regeneration and behavioural 
recovery in stroke-injured mice is observed only with 
the combined treatment254. Combinatorial approaches 
will inarguably be the next frontier in biomaterials 
research for regeneration.

Multiple unexplored avenues for biomaterials in 
regenerative medicine remain. Often, biomaterials 
are designed first, and then applications are explored; 
however, by understanding the biological system into 
which biomaterials are implanted, design criteria can 
be specified and outcomes improved. For example, the 
interactions between stem and progenitor cells and 
their niche are complex and depend on a multitude of 
chemical and physical factors, many of which have not 
yet been elucidated. Instead of attempting to recreate 
this convoluted microenvironment within a material, it 
may be advantageous to manipulate the niche cells to  
alter their phenotype. Such ‘activated’ niche cells could 
then provide an array of stimuli to transplanted cells in 
physiologically relevant concentrations and time frames, 
thus potentially improving regeneration. Niche-targeted 
therapeutics are the subject of intensive research efforts 
in stem cell biology, particularly for the haematopoie-
tic system255,256, and might also be a promising research 
direction for the biomaterials community. For example, 
HSCs do not express the parathyroid hormone (PTH) 
receptor, whereas osteoblasts, which are an indispen-
sable component of the HSC niche, express the PTH  
receptor257. PTH activates the Notch pathway in osteo-
blasts, which in turn promotes transplanted HSC 
engraftment in lethally irradiated mice258. Therefore, 
instead of directly targeting HSCs, osteoblasts in the 
niche can be activated by PTH to then induce the desired 
effect on HSCs. Similarly, the secretion of chemokines, 
for example, CXCL12, by endothelial and mesenchy-
mal cells in the HSC niche is required for HSC survival, 
expansion and differentiation towards the lymphoid lin-
eage259. Patients requiring HSC transplants are likely to 
have undergone chemotherapy or radiotherapy, which 
disrupts the HSC niche. Therefore, factors that induce 
remodelling of the HSC niche, for example, through pro-
moting survival or proliferation of host cells, are actively 
being investigated.

This approach is not restricted to the stem cell 
niche. Ciliary neurotrophic factor (CNTF) promotes 
photoreceptor survival in animal models of retinal 
degeneration and in humans260,261. Interestingly, CNTF 
does not exert its effect by directly binding to photo-
receptors but rather by stimulating neuroprotective 
signal secretion by the Muller glia262. Taking advantage 
of such signalling events and implementing them in 
biomaterials-mediated cell transplantation strategies 
could lead to desired donor cell–host interactions and 
regenerative responses through modulation of the host 
site and cells.

Biomaterials are an essential component of the regen-
erative medicine toolkit. To improve cell survival and 
integration, and to enable regeneration and clinical trans-
lation, the interactions between donor cells,  material and 
host must be further elucidated and coordinated.
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Fig. 4 | Biomaterials impact host immune response. Multiple biomaterial properties, 
including hydrophobicity , shape, size and surface roughness, can influence the local 
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