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xonal Guidance Channels
n Peripheral Nerve Regeneration
ason S. Belkas, MSc,* Molly S. Shoichet, PhD,† and Rajiv Midha, MD, MSc, FRCS(C)*

In recent times, tissue engineering researchers have been attempting to provide the
scientific and medical communities with improvements in the repair of peripheral nerve
injuries using synthetic grafts. Although the nerve autograft still remains the clinical gold
standard in bridging nerve injury gaps, many advances on several fronts have been made
in developing a more effective nerve tubular construct to guide regenerating axons across
the lesion. This review discusses several strategies that have been employed to enhance
the regenerative effectiveness of artificial nerve guidance channels. These strategies
include the use of scaffolds, the integration of contact-mediated cues within the tubular
construct, and incorporation or delivery of exogenous growth factors into the conduit lumen
uniformly or in a gradient form. Animal and clinical studies are reviewed to explain some of
the ideas involved in developing a guidance channel of the future.
Oper Tech Orthop 14:190-198 © 2004 Elsevier Inc. All rights reserved.

KEYWORDS axonal regeneration, clinical trials, growth factors, scaffolds, synthetic nerve
conduits, tissue engineering
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eripheral nerve injuries are common and serious disor-
ders affecting 2.8% of trauma patients, many of whom

cquire life-long disability.1 In the United States alone,
60,000 people suffer from upper extremity paralytic syn-
romes on an annual basis, resulting in over 8.5 million
estricted activity days and almost 5 million bed/disability
ays.2 Peripheral nerve injuries are common in Europe as
ell, with over 300,000 cases occurring annually.3

eripheral Nerve
njury and Repair
eripheral nerve transection results in Wallerian degenera-
ion in all of the axons distal to the injury site, as evidenced by
he disintegration of axoplasmic microtubules and neurofila-
ents.4 Most of the axons along the distal stumps of

ransected nerves are reduced to granular and amorphous
ebris within 24 hours; by 48 hours, the myelin sheath has
egun to be transformed into short segments that then form
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nto ovoids.5 Activated macrophages migrate into the degen-
rating nerve stumps and phagocytose the disintegrating
erve fibers and myelin. Schwann cells proliferate in re-
ponse to myelin debris and macrophage-derived cytokines5

nd form longitudinal Schwann cell bands (bands of Bung-
er) as they divide and remain within the basal-lamina-lined
ndoneurial tubes.6

Myelinated and unmyelinated fibers, at a distance proxi-
al to the injury site where the axons are still intact, sponta-
eously sprout new daughter axons,7 forming a “regenerating
nit” that is surrounded by a common basal lamina.6 The
prouts progress in a distal fashion. The regenerative sprout-
ng of the proximal axon requires elongation of the axon,
hich is mediated by the growth cone.4 The growth cone

xplores its surrounding environment as it advances. It ac-
omplishes this search and sampling with the use of its filo-
odia that extend from a flattened sheet of lamellipodia.4

rowth cones are guided to their targets by a combination of
ontact-mediated (haptotactic) and diffusible (chemotactic)
ues that are either attractive or repulsive.8 With time, only
hose axons that reach their targets mature, whereas the oth-
rs are withdrawn,9 resulting in reduced nerve function.10

Peripheral nerve injury repair strategies have been at-
empted for several hundred years, with the first reports in
he 17th century.11 Although many strategies have been at-
empted, management of large peripheral nerve gaps has
een classified into the following 2 general categories: (1)
ridge operations, which include all grafting, transposition,
nd tubulization techniques; and (2) manipulative nerve op-

rations, which includes end-to-end apposition of the nerve
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Axonal guidance channels in peripheral nerve regeneration 191
tumps.12 We now know that nerve regeneration is more
ffective with nerve grafting procedures than with manipula-
ive measures that cause tension across a repair site of any
ubstantial peripheral nerve gap.13,14

Nerve repair strategies aim to direct regenerating nerve
bers into the proper distal endoneurial tubes thereby guid-

ng them to their appropriate end organs. This often requires
esection of a neuroma and repair of the resulting nerve gap.
erve autografts (nerve segments of autogeneic or self origin)

emain the gold standard for peripheral nerve repair, bridg-
ng the proximal and distal stumps of gaps longer than 5

m.13,15,16 The clinical treatment of peripheral nerve injuries
as changed relatively little, despite advances in our under-
tanding of nerve pathophysiology. To date, no tubular or
ther type of conduit has proved superior to the autologous
erve graft, at least not for reconstruction of substantial hu-
an nerves such as the median or ulnar nerve trunks. The
erve graft contains Schwann cells and basal lamina endo-
eurial tubes,17 which provide neurotrophic factors18 as well
s favorable cell and endoneurial tube surface adhesion mol-
cules19 to regenerating axons.20

Nerve autografting has inherent flaws; procuring the do-
or nerve incurs a new neurological deficit, in addition to
onor site morbidity, such as scar and occasionally neuroma
ain.21 Additionally, there may be insufficient length and
iameter of autogenous nerve to optimize reconstruction.22

nother major shortcoming of the nerve graft technique is
he biological constraint, which cannot be overcome by fur-
her progress in microsurgical techniques. Even with the
ost meticulous repair, the endoneurial tubes can never be

eapproximated exactly, and this results in mismatching of
egenerating axons at the site of suture, or within the graft,
eading to inappropriate (nonspecific) and incomplete rein-
ervation and subsequent poor recovery in function.23 This
ay be compounded by the grafted nerve, which contains

housands of linearly oriented basal lamina endoneurial
ubes, each of which can impose nontopographic direction-
lity to a regenerating nerve fiber, resulting in random and
onspecific reinnervation of the distal nerve stump.23 Alter-
atively, an artificial (nonnerve) conduit interposed between
he proximal and distal nerve stumps may provide a more
uitable environment for regenerating fibers to sample and
espond to appropriate directional cues.16 Moreover, a bio-
ngineered graft allows the incorporation of strategies that
uild on our rapidly expanding knowledge of axonal guid-
nce and thereby offers the hope of providing an improved
lternative to the nerve autograft.24,25

The use of nerve guidance channels, sutured in between
he proximal and distal nerve stumps, has been actively pur-
ued to obviate the need for the second surgery and perhaps
o obtain better regenerative results than the autograft. Be-
ause fewer epineurial sutures are required for entubulation
epair (because the nerve stumps are placed into the ends of
he tube as opposed to simply abutting against the autograft),
here should be less surgical trauma.4 Moreover, guidance
hannels (or tubes) assist in directing axons from the proxi-
al to the distal stump without any interference from imper-

ectly aligned degenerating fascicles of the nerve graft or the
losely apposed distal stump.4 Finally, guidance channels
inimize the infiltration of fibrous scar tissue, which can

inder axonal regeneration, while at the same time maximiz- e
ng the accumulation of soluble factors produced by the
erve stumps.6

iological Nerve Grafts
onnerve tissues were used by Weiss as alternatives to suture

epair of nerve to successfully bridge very short nerve
aps.26,27 Since then, conduits from many different biological
issues have been used. These include the use of arteries,27

eins,28,29 muscle,30-32 and other materials extensively re-
iewed by Doolabh et al.15 Modified biological tissues such as
aminin15 and collagen33,34 have also been used and have
roved successful in specific situations.15 There are a number
f disadvantages with the use of blood vessel, muscle, and
ther biologic tissues in bridging peripheral nerve defects,
ncluding tissue reaction, early fibrosis, scar infiltration, and
ack of precise control of the conduits’ mechanical proper-
ies.15 These limitations have led to the emergence of con-
uits made from novel synthetic materials; however, biocom-
atibility has now become an important consideration.

egenerative Events
ccurring within
Synthetic Chamber

hen the 2 nerve stumps are positioned within the proximal
nd distal parts of a hollow tube, the conduit fills within a day
ith serous fluid, which has neurotrophic activity.4 This
uid, which contains neurotrophic factors and affects sen-
ory, sympathetic, and motor neurons, peaks in activity after
hours, 1 day, and 3 days, respectively.4 Matrix precursors

ccumulate and over several days a coaxial, acellular-fi-
ronectin-positive, laminin-negative matrix forms that acts
s a scaffold for migrating cells from the nerve stump and the
ormation of a tissue cable that tapers from both proximal
nd distal stumps toward the center.4,6 Regeneration of axons
s constrained by the preformed tapered tissue cable. This
apering decreases with smaller diameter tubes and increases
ith longer tubes.4

ynthetic Guidance Channels
ecause bioengineered nerve grafts are of synthetic origin,
any of the graft properties (eg, length, diameter, wall thick-
ess, permeability, degradability, interior surface morphol-
gy, conductivity) can be manipulated to meet the clinical
equirements. A review by Belkas et al24 describes each of
hese key biomaterial properties that one should consider
hen designing and developing potential guidance channel

andidates.
Various strategies have been implemented that attempt to

nhance the regenerative effectiveness of artificial conduits.
hese include the use of scaffolds, integration of contact-
ediated cues within the channel, and incorporation or de-

ivery of exogenous growth factors into the tube lumen uni-
ormly or as gradients.

caffolds
onduit gap limitations can be partially overcome by an ori-

nted inner scaffold providing an environment that is both con-
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192 J.S. Belkas, M.S. Shoichet, and R. Midha
ucive and inducive for axonal regeneration,4 with some of the
est results35 obtained by inserting an internal gel matrix4,36-39

uch as one made from collagen.40-44

In an attempt to mimic the guidance structure of the pe-
ipheral nerve autograft, which consists of several tubes
bands of Bungner) surrounded by an outer tube,14 the use of
nternal fibers and guidance channels has been proposed.25

eripheral nerve regeneration can also be further enhanced
y prefilling nerve tubes with dialyzed plasma, which forms a
brin gel.45 This gel resembles the fibrin matrix formed dur-

ng the early stages of regeneration. Therefore, longitudinally
ligned fibers have been incorporated into the lumen of nerve
ubes to test their effectiveness. A magnetically aligned type I
ollagen gel was found to have a directional effect on neurites
nd Schwann cells from dorsal root ganglia cultured in the
el surface, resulting in increased neurite ingrowth into the
el compared with the control collagen gel.46 Ceballos et al
emonstrated that collagen tubes filled with magnetically
ligned type I collagen gel significantly improved in vivo
egeneration over tubes filled with a control collagen gel.47 It
as hypothesized that the aligned collagen gels guided the
rowth cones and Schwann cells by contact-mediated cues.46

ilicone tubes prefilled with aligned collagen or laminin-con-
aining gels improved the quality of regeneration in the
ouse sciatic nerve.48 A recent in vitro study showed that
agnetically aligned fibrin gels also guided axons.49 Arai et al

eported that silicone tubes inserted with longitudinally
ligned polyamide, catgut, polydioxanone, normal poly-
lactin, or quickly absorbed polyglactin filaments each ex-
ibited a regenerating bridge and some degree of functional
ecovery across a 15-mm-long rat sciatic nerve gap that was
ot seen with empty silicone tubes after 3 months postim-
lantation.50

aptotactic Cues
xons are guided to their targets by growth cones that re-
pond to the coordinated action of contact-mediated and
iffusible cues, which are either attractive or repulsive.8,51,52

ontact-mediated cues such as extracellular matrix proteins
r cell adhesive peptides can be incorporated within a scaf-
olding structure.

Extracellular matrix proteins, mainly collagen, laminin,
nd fibronectin, are haptotactic cues that guide growth cones
uring regeneration. Axonal elongation can be further stim-
lated with the inclusion of these proteins into tubes. The

ncorporation of collagen gels within guidance channels has
een shown to improve regeneration relative to saline-filled
ubes in several studies.38,40,53 Laminin-filled tubes also pro-
oted regeneration compared with control tubes.36,54 Incor-

orating a laminin-soaked collagen sponge into a guidance
hannel is also promising because it has shown comparable
esults to tubes enhanced with collagen fibers.55

Cell adhesion molecules, such as neural cell adhesion mole-
ule, L1, myelin-associated glycoprotein, and neuron–glia cell
dhesion molecule, affect cell interactions during the develop-
ent, maintenance, and regeneration of the nervous system.4

pecific cell-surface receptors such as integrins56 bind to extra-
ellular matrix proteins such as laminin and fibronectin,57 in
hich the amino acid sequences arginine–glycine–aspartic acid
RGD) have been found to be important for binding.58,59 The t
equence tyrosine–isoleucine–glycine–serine–arginine (YIGSR)
n the �1 chain of laminin has been shown to enhance cell
dhesion of neural cells,60 whereas the sequence isoleucine–
ysine–valine–alanine–valine (IKVAV) on the � chain of laminin
as been found to promote neurite outgrowth of pheochromo-
ytoma (PC12) cells.61 Several investigators have found that
eptide-modified surfaces enhance cell adhesion.62-67 Within in
itro systems, YIGSR, IKVAV, and RGD can enhance the inter-
ction of primary neuronal cells with fluoropolymers,68,69

IGSR and IKVAV act synergistically,60 and neuron adhesion
nd outgrowth can be directed .63,70 Recently, the adhesive fi-
ronectin peptide fragment glycine–arginine–glycine–aspartic
cid-serine (GRGDS) was also found to guide axonal outgrowth
n vitro.71

hemotactic Cues
eurotrophic factors (NTFs) support survival, differentia-

ion, and growth of neurons in the developing nervous sys-
em and promote nerve regeneration.18,72,73 Members of the
eurotrophin family that have been used in nerve guidance
hannel studies include nerve growth factor (NGF), brain-
erived neurotrophic factor (BDNF), and neurotrophin-3
NT-3).16 When these factors bind to their specific receptors,
hey activate important intracellular signaling and activation.
eurotrophin family members are small homologous pro-

eins (sharing 50-60% amino acid identities) that promote
urvival and differentiation of specific groups of neurons by
ransducing signals through distinct but related tyrosine re-
eptor kinase (Trk) molecules.74,75 Each neurotrophin dem-
nstrates greatest affinity for specific members of the Trk
eceptor family: NGF for TrkA, BDNF and NT-4/5 for TrkB,
nd NT-3 for TrkC.74 Each neurotrophin also binds the low-
ffinity p75 neurotrophin receptor (p75).72,76 The p75 recep-
or is one of the receptors that regulates the direction of
xonal elongation77 and is important for motoneuronal sur-
ival during development,78 but p75 expression after injury
as also been demonstrated to inhibit axonal regeneration.78

NGF has trophic and tropic actions on the following 3
ain classes of cells: peripheral sympathetic and sensory
eurons and central cholinergic neurons.79 Approximately
0% of the sensory neurons in dorsal root ganglions, the
mall-sized population that subserve pain and temperature
eception, express high levels of trkA and are responsive to
GF.80 Atrophy and decreased Trk-A expression after axo-

omy can be reversed by the addition of exogenous NGF,81

hich also upregulates neurofilament expression82 and pro-
otes growth of dorsal root ganglion axons in the peripheral
erve83 and the dorsal columns of the spinal cord.84 The
verall effect on functional nerve regeneration in vivo is
ixed,18,85 perhaps because collateral sprouting may pre-

ominate over regeneration.86 The Schwann cells in the nerve
tump distal to axotomy not only provide an increased
mount of NGF,87 but also upregulate expression of the p75
GF receptor,88,89 thereby providing both a trophic substrate

nd a chemotactic gradient to axons sprouting from the prox-
mal stump.

BDNF supports survival of embryonic sensory neurons90

nd is produced by peripheral glia,91 target-derived from
keletal muscle92,93 and retrogradely transported to mo-

oneuron cell bodies promoting their survival during devel-
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Axonal guidance channels in peripheral nerve regeneration 193
pment.94 In the adult, exogenous BDNF can replace the lack
f availability of endogenous factor after peripheral axo-
omy,95 thereby preventing the death of motor neurons92,96,97

nd promoting their regeneration96-98 and remyelina-
ion.93,99-101 Several guidance tubes have been used with
DNF incorporated into their lumen.43,98,102-104

NT-3 is potently neurotrophic for sympathetic neu-
ons105,106 and for large sensory neurons that express high
evels of TrkC,107 particularly those that subserve muscle
pindle and limb proprioceptive function.74,107-110 Exoge-
ous administration of NT-3 may be especially beneficial
ecause its levels are decreased in the neuron after peripheral
xotomy at the same time as the proximal nerve stump ex-
resses increased levels of TrkC.111 Indeed, NT-3 augments
eripheral nerve regeneration,112 likely due to its trophic ef-
ects on large sensory107,112 and motor neurons.113,114 NT-3
as been used in numerous nerve conduit studies in recent
ears.43,103,104

The fibroblast growth factor (FGF) family of polypeptides
re strong heparin-binding proteins that were originally pu-
ified from bovine pituitary and brain.115,116 The prototype
amily members, FGF-1 and FGF-2 (acidic and basic FGF,
espectively), are important regulators in the growth and de-
elopment of mesodermal and neuroectodermal tissue, in-
luding angiogenesis and Schwann cell proliferation.116

GF-1 is enriched in neurons,116 produced within the cell
ody and anterogradely transported along the axon.117 After
xotomy there is a dramatic reduction in FGF-1 levels in the
istal stump undergoing degeneration.117 In vitro, FGF-1
ediates survival and differentiation of several types of cen-

ral and peripheral neurons,118-120 whereas in vivo applica-
ion of FGF-1 induces both peripheral37,119,121 and spinal
ord axonal122,123 regeneration.

Some other neurotrophic and neurotropic factors that
ave shown success in nerve regeneration studies include
asic FGF-2, insulin-like growth factor, platelet-derived
rowth factor, ciliary neurotrophic factor, interleukin-1, and
ransforming growth factor beta.25,124

There have been many other studies that incorporated var-
ous components into the lumen of tubes to promote nerve
egeneration, including testosterone, gangliosides, cata-
ase,125 adrenocorticotropin,126 glial-derived protease inhibi-
or,127 forskolin,128 pyronin,129 matrigel,130 and hyaluronic
cid.131

It has long been recognized, since Cajal’s pioneering
ork,132 that axons from a severed peripheral nerve exhibit

ropism, or the tendency to extend across a gap toward and
nto the denervated distal stump. Only recently has it been
erified that the distal nerve indeed provides neurotropic
upport,133,134 rather than just a source of migrating cells.32

hese in vivo observations support a wealth of in vitro data.
ulti-compartment experiments demonstrate that NGF ex-

rts a tropic effect on the regenerating neurite,135 which is
est explained by gradients of soluble NGF136 and other pe-
ipheral-nerve-derived factors137 directing axonal regenera-
ion. The sampling, comparing, and decision-making proce-
ure accomplished by the growth cone at the nerve fiber
erminus is believed to be a concentration-gradient-depen-
ent action,138,139 which evokes a set of intracellular events

nvolving cytoplasmatic second messenger.139,140 A gradient

f the cytoplasmatic second messenger may signal the pref- h
rential incorporation of new plasma membrane material and
symmetric cytoskeleton reorganization at the growth cone
hat is required for the appropriate orientation of neurites.140

arious studies have used concentration gradients of growth
actors in vitro to direct and enhance the extension of grow-
ng neurites.141-143 Hence, the inclusion of gradients of
rowth factors may be another potential strategy to improve
eripheral nerve regeneration in vivo.

elivery of Growth Factors
issue engineering offers the promise of healing damaged
arts of the human body through the implantation of artifi-
ial materials and biological agents or cells to stimulate the
ody’s own tissues to regenerate themselves. This often in-
olves seeding precursor cells onto materials and then im-
lanting the composite construct into a defect site in which
he cells will then naturally differentiate into the desired tis-
ue. Complex tissues that have an intricate network architec-
ure, such as neural tissue, may probably require the delivery
f molecular signals at different spatial locations and times
uring the process of regeneration to engineer the proper
issue structure for functional recovery. For instance, it is well
nown that gradients of NGFs direct and guide axonal
rowth during development and that the varying concentra-
ions of growth factors can influence the differentiated state
f the cells in neural tissue. Similarly to the natural process of
evelopment, regeneration is regulated in a stepwise fashion
y temporal and spatial molecular cues and cellular re-
ponses. The spatial and temporal delivery of various regula-
ory molecules may prove to be important for successful neu-
al tissue engineering in the adult nervous system, as has been
uggested.144

Growth factors have been most commonly delivered with
he use of implantable osmotic pumps145 or implanted into
he nerve injury site with a variety of carriers such as gel-
oam,146,147 fibrin glue,122,123 and genetically engineered cells
ncluding Schwann cells99,148-151 and fibroblasts.152 The
rowth factor can also be incorporated into the matrix sub-
tance within the guidance channel.4 Utley et al demon-
trated that direct delivery into the local environment where
xons are regenerating promoted better axonal regeneration
ompared with osmotic pump release.98 Two significant lim-
tations of delivering factors within a matrix are inadequate
ioavailability or bioactivity and the uniform concentration
elivered across the device. Neurotrophic factors were en-
apsulated by Cao and Shoichet in biodegradable micro-
pheres that slowly released their contents as they degraded,
hich improved bioavailability and bioactivity.153

In our recent work, poly(2-hydroxyethyl methacrylate-
omethyl methacrylate) hydrogel tubes have been used to
ridge 10-mm-long rat sciatic nerve injury gaps. When filled
ith 10 �g/mL of FGF-1 dispersed in a 1.28 mg/mL colla-
en-1 gel matrix, these tubes demonstrated comparable re-
eneration to nerve autografts at 8 weeks postimplantation
nd superior regeneration compared with channels filled
ith other types of growth factors (Table 1, Fig. 1).40 Future

tudies in this area of tissue engineering will attempt to en-

ance in vivo nerve regeneration over the long term.
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194 J.S. Belkas, M.S. Shoichet, and R. Midha
erve Conduits
sed in Clinical Trials

ome of the experimental studies described above have led to
linical trials with nerve conduits to improve peripheral
erve regeneration. Successful reconstructions of the ulnar154

nd the median nerves155 were accomplished with silicone
onduits in 3 young adult male patients with gap lengths that
anged from 3 to 5 mm. However, these impermeable non-
iodegradable tubes elicited an inflammatory and fibrotic
eaction and produced chronic nerve compression,156 which
ltimately required their removal after regeneration had oc-
urred through them.

Expanded polytetrafluoroethylene has been used in the
linical setting with some success in repairing median and
lnar nerve gaps up to 4 cm in length.157 Excellent sensory
ecovery was seen in 13 of the 16 patients for the repair of
igital nerve gap lengths averaging 1.7 cm and in 3 of 4
atients with a 2.4-cm average gap length in median
erves158,159 with the use of biodegradable polyglycolic acid
onduits. In a randomized prospective study, polyglycolic
cid tubes have also been proven to be successful in the
linical repair of digital nerves with defects up to 3 cm.160

olyglycolic acid tubes (Neurotube, Neuroregen, Bel Air,

able 1 Total Fibre Count in the Distal Nerve (Mean � SEM)
f Rats 8 Weeks After Nerve Repair With a PHEMA-MMA
uidance Channel

Group Total Fiber Count

FGF-1 (1 �g/mL) 740.70 � 224.21
NT-3 507.61 � 139.58
BDNF 867.77 � 426.62
FGF-1 (10 �g/mL) 2534.26 � 933.76
Autograft 2271.01 � 137.87
Collagen only 535.69 � 209.37
Empty tubes 219.66 � 108.59

his is a partial table. Adapted with permission from the Journal of
Neurosurgery.40

igure 1 Representative low-power photomicrograph of 1-�m tolu-
dine-blue-stained cross-sections of 8-week poly(2-hydroxyethyl

ethacrylate-comethyl methacrylate) tubes at mid-graft level. Note
he contained nerve regenerating tissue (RT) within the tube walls
pTW). Magnification 50�.
D) were approved by American regulatory agencies for the
epair of peripheral nerve injuries partly based on these re-
ults. Also, collagen nerve tubes (NeuraGen, Integra Neuro-
ciences, Plainsboro, NJ) have also obtained similar approval
ased on their success in nonhuman primates34,161 as well as

n Phase I-II clinical safety studies. In 2001, SaluMedica (At-
anta, GA) and Collagen Matrix (Franklin Lakes, NJ) each
eceived approval for their tubular constructs used in repair-
ng peripheral nerves. By using a repeated freeze-thawing
echnique, SaluMedica produces a hydrogel tube made from
olyvinyl alcohol, whereas Collagen Matrix has developed a
ollagen nerve cuff made from collagen fibers. Most recently,
olyganics (Groningen, The Netherlands) employed a dip
oating procedure to manufacture a resorbable poly(DL-lac-
ide-caprolactone) tube (Neurolac). However, many of the
linical studies used by these companies are limited primarily
o short defects of the small-caliber digital nerve. A recent
omprehensive review of the literature pertaining to the clin-
cal use of nerve conduits is provided by Meek and Coert162

nd Freier et al.163

onclusions
s tissue engineering progresses forward, the development of
dditional novel biomaterials and new ideas will likely allow
he scientific and medical communities to improve functional

igure 2 Design of a multicomponent peripheral nerve guide that
ncorporates many different strategies to optimally promote periph-
ral nerve regeneration. These approaches include the incorpora-
ion of haptotactic (cell-adhesive molecules) and chemotactic (neu-
otrophic factors) cues, an oriented scaffold, and a drug delivery
ystem for controlled release of neuroactive agents. Reprinted with

ermission from Cao and Shoichet.164
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ecovery after nerve injuries. Furthermore, biotechnology is a
apidly expanding field that has great potential to improve
eripheral nerve regeneration, such as the development of
enetically modified cells seeded into the lumen of a conduit
hat release neurotrophic/neurotropic factors. The future of
xonal guidance channels will likely include the design of a
ulticomponent nerve guidance device (such as that sug-

ested in Fig. 2) that incorporates multiple strategies to im-
rove peripheral nerve regeneration, including cells.
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