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Introduction

T issue-engineered scaffolds were initially designed
for implantation with the idea of growing tissues in vitro

before transplantation. This spawned several decades of re-
search, which is still active today, into highly porous poly-
meric scaffolds in which cells are seeded and expected to
develop into tissue.1,2 Biomaterial matrices were designed to
provide structured extracellular matrix (ECM) analogs for
cell growth, offering a milieu in which to direct cell migra-
tion, proliferation, and fate.3 More recently, strategies to
mimic the ECM in vitro to study development, disease pro-
gression, or drug screening have led to a new generation of
dynamic engineered scaffolds—that is, scaffolds that cells
can remodel.4–6 Hydrogels are widely used to form these
three-dimensional (3D) matrices and have evolved from
simple materials into dynamic scaffolds designed with mul-
tiple features that mimic the ECM. Natural, synthetic, or
hybrid materials are used to form these crosslinked hy-
drogels, with each system possessing advantageous fea-
tures. Whereas natural materials (such as collagen, fibrin,
and hyaluronic acid [HA]) inherently contain biological
signals, hydrogels formed from these materials tend to be
mechanically weak and manipulation of their chemical and
physical properties requires chemical crosslinking reac-
tions. Matrigel�, which is derived from mouse sarcoma,
has been used in many studies and also has a low modulus;
however, Matrigel is chemically ill-defined, confounding
the influence of the microenvironment on cell behavior.
Whereas synthetic hydrogels [e.g., poly(ethylene glycol)
(PEG)] are well defined, these materials are biologically
inert, requiring the separate introduction of regulatory cues
to guide cell function.

The development of biomimetic hydrogels has seen com-
plex new materials that exploit inherent material strength
with unique chemical and physical modifications to create
physiologically relevant cell culture models. In this perspec-
tive, the current state of hydrogel design is discussed with
emphasis on the engineering approaches used to recapitulate
the microarchitecture (porosity, pore size, interconnectivity),
mechanical properties, and biochemical cues found in native
ECM, as well as recent techniques developed to introduce

chemical and physical properties that can be dynamically and
spatiotemporally controlled.

Current State of Hydrogel Design

To facilitate cellular infiltration and adequate nutrient
transport, hydrogels must emulate the microarchitecture of
native ECM.7–9 A variety of techniques have been used in
hydrogel fabrication to incorporate and control bulk porosity,
including solvent casting/particle leaching, freeze-drying, gas
foaming, soft lithography micromolding, electrospinning,
solid freeform fabrication, and cryogelation.8,10,11 Cryogela-
tion has gained popularity in tissue-engineered scaffold de-
sign as it can be used to incorporate interconnected pores into
a variety of hydrogel systems without the use of cytotoxic
porogens12 and advanced instrumentation. By altering thaw
temperature and through the addition of carbohydrates during
cryogelation, tunable pore size and gel stiffness have been
achieved in HA/PEG hydrogels.11 Cryogels also possess
elastic and shape-memory properties,13 which may be bene-
ficial for application as cardiac patches.14 Spatially control-
ling the nanoarchitectural features of a 3D hydrogel has been
recently described by Anseth and coworkers, who used
photosensitive crosslinkers that could be cleaved in specific
regions within the 3D hydrogels using multiphoton confocal
microscopy15,16; this resulted in erosion of structures of de-
fined size and dimension, and allowed guided cell migration
through hollowed-out architectural features.

Cells sense the local mechanical properties of their en-
vironment, converting mechanical signals into chemical
signals that in turn alter gene expression.17 Therefore, it is
essential to design hydrogels with mechanical properties
that can be tuned to match to those of native tissue. A major
challenge when tuning hydrogel rigidity is ensuring that
other hydrogel properties are not altered in the process.18

For example, varying the concentration of hydrogel con-
stituents commonly controls hydrogel stiffness; however,
this can affect protein transport, which consequently alters cell
function.19,20 Moreover, simply varying the polymer concen-
tration to change gel stiffness can also change the concen-
tration of the bioactive ligands present in the gel. Recent
studies have focused on decoupling the ligand concentration
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from the gel concentration.21 With the development of cyto-
compatible, aqueous ‘‘click’’ chemistry techniques,22 bioac-
tive ligands can be covalently bound to synthetic hydrogels in
a controlled manner, where the concentration of the bulk
hydrogel can be altered independently of ligand densi-
ty.23,24 In addition, mechanical properties can also be tuned
by varying the molecular weight of the macromer or by
varying the number of functional groups on the polymer,
which participate in the crosslinking reaction.11,25 The
Burdick laboratory has recently developed an innovative
method to temporally control hydrogel mechanics.26 A
dithiothreitol crosslinked methacrylated HA hydrogel was
further crosslinked through radical polymerization of the
remaining methacrylate groups, thereby stiffening the gel
on demand. This resulted in selective differentiation of
mesenchymal stem cells based on the timing of the hy-
drogel’s mechanical change.

Whereas hydrogels formed from natural materials such as
collagen, fibronectin, and HA are inherently bioactive, syn-
thetic hydrogels such as PEG are biologically inert and require
the addition of bioactive molecules to regulate cell function.
Some of the earliest hydrogel ligand modifications occurred
over 20 years ago when the fibronectin-derived peptide RGD
was tethered to synthetic hydrogels such as polyacrylamide and
poly(lactic acid-co-lysine) copolymer.27,28 Since then, a large
number of adhesive peptide sequences have been incorpo-
rated into both natural and synthetic hydrogels, including
peptide sequences derived from fibronectin (PHSRN), col-
lagen (GFOGER), elastin (VAPG), and laminin (YIGSR,
IKVAV), providing additional biomimetic ligands available
to recapitulate in vivo microenvironments.29–33

Elaborate conjugation methods through site-specific
cleavage of photolabile protecting groups to selectively
expose reactive functional groups for conjugating desired
molecules have been developed, allowing for precise spatial
control over the 3D organization and concentration of bio-
active peptides. Agarose hydrogels with defined photo-
patterned gradients of VEGF-165 successfully guided the
migration of endothelial cells, and recently, HA/PEG hy-
drogels were patterned with gradients of EGF, showing the
versatility of the same photochemistry with multiple gel
types.11,34 Shoichet and coworkers demonstrated simulta-
neous spatial control of multiple biomolecules using pho-
tochemistry in combination with the orthogonal physical
binding pairs, barnase–barstar and streptavidin–biotin.35

This technique defines the 3D distribution of multiple signaling
molecules and has utility in spatially guiding the fate of stem/
progenitor cells. Using wavelength-selective photocleavage,
Anseth and colleague developed hydrogels that are able to
release molecules on-demand, creating a dynamic display of
chemical cues.36 In addition to the immobilization of bioactive
peptides/proteins, stimuli responsive hydrogels have also been
created in an effort to recapitulate the dynamic nature of the
ECM. Enzyme cleavable sequences (e.g., matrix metallopro-
tease-sensitive sequences GPQGIWGQ, GPQGIAGQ and
GCRDVPMSMRGGDRCG) have been incorporated into
hydrogel backbones to give synthetic hydrogels the capacity to
be proteolytically degraded by cell secreted enzymes, thus
enabling cell migration and matrix remodeling.6,37,38

In addition to the chemically, physically, and mechani-
cally defined tissue-engineered scaffolds, the ECM facilitates
cell–cell interactions, often between multiple cell types. The

interplay of multiple cell types in defined hydrogels has
been explored. For example, the symbiotic relationship be-
tween retinal precursor cells and endothelial cells in
GRGDS/VEGF-165-gradient agarose scaffolds was demon-
strated, whereby the endothelial cells formed stable tubular-
like structures in the presence of retinal precursor cells that
migrated and extended cellular processes along the endothe-
lial cells.39 Similarly, Bhatia et al. have shown the importance
of fibroblasts to hepatocyte function using micropatterning
techniques, which localized cell populations, allowing control
over cell–cell interactions at the coculture interface.40

Integrated Design

To create defined environments for cell culture, the
microarchitecture, mechanical properties, and biochemical
cues must be all capable of independent spatial manipu-
lation within a single hydrogel system. The incorporation
of spatiotemporally controlled chemical and physical cues
into a hydrogel has been enabled with the development of
multiphoton laser patterning and carefully designed pho-
tochemically labile hydrogels. These independent spatial
manipulations of a hydrogel culture system allow precise
control over the cell microenvironment, but still represent
an overly simplified model of cell-ECM interactions. Since
native ECM contains a plethora of bioactive signaling
molecules, engineering strategies must control the spatio-
temporal distribution of multiple chemical and physical
cues. The field of tissue engineering has seen greater
complexity built into the hydrogel design through the de-
velopment of dynamic and tunable physical and chemical
properties. The dynamic reciprocity between cell–matrix
interactions may require chemical and physical cues to be
displayed in a reversible manner. For example, during
development, cells are exposed to chemical cues at specific
times, and prolonged exposure will result in a change in
cell function.41,42 The continued development of novel
conjugation chemistry that can enable stimuli responsive
activation/deactivation of chemical and physical cues is a
powerful method to enable the incorporation of multiple
factors.

Tissue-engineered hydrogels require integrated design
strategies, including the interplay of multiple cell types.
Although there are currently no hydrogels that contain all
the necessary cues needed to emulate native ECM, the goal
is to produce microenvironments that contain the essential
signals needed to recapitulate in vivo cell migration, pro-
liferation, and fate. This will enable better systems with
which to study and understand development, disease pro-
gression, and drug screening and ultimately lead to tissue
mimetics with greater opportunity for successful trans-
plantation.
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